Generators in Python

A generator is simply a function which returns an object on which you can call next, such that for every call it returns some value, until it raises a StopIteration exception, signaling that all values have been generated. Such an object is called an iterator.

Normal functions return a single value using return, just like in Java. In Python, however, there is an alternative, called yield. Using yield anywhere in a function makes it a generator. Observe this code:

>>> def myGen(n):
...     yield n
...     yield n + 1
>>> g = myGen(6)
>>> next(g)
>>> next(g)
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

As you can see, myGen(n) is a function which yields n and n + 1. Every call to next yields a single value, until all values have been yielded. for loops call next in the background, thus:

>>> for n in myGen(6):
...     print(n)

Likewise there are generator expressions, which provide a means to succinctly describe certain common types of generators:

>>> g = (n for n in range(3, 5))
>>> next(g)
>>> next(g)
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

Note that generator expressions are much like list comprehensions:

>>> lc = [n for n in range(3, 5)]
>>> lc
[3, 4]

Observe that a generator object is generated once, but its code is not run all at once. Only calls to next actually execute (part of) the code. Execution of the code in a generator stops once a yieldstatement has been reached, upon which it returns a value. The next call to next then causes execution to continue in the state in which the generator was left after the last yield. This is a fundamental difference with regular functions: those always start execution at the “top” and discard their state upon returning a value.

There are more things to be said about this subject. It is e.g. possible to send data back into a generator (reference). But that is something I suggest you do not look into until you understand the basic concept of a generator.

Now you may ask: why use generators? There are a couple of good reasons:

  • Certain concepts can be described much more succinctly using generators.
  • Instead of creating a function which returns a list of values, one can write a generator which generates the values on the fly. This means that no list needs to be constructed, meaning that the resulting code is more memory efficient. In this way one can even describe data streams which would simply be too large to fit in memory.
  • Generators allow for a natural way to describe infinite streams. Consider for example the Fibonacci numbers:
    >>> def fib():
    ...     a, b = 0, 1
    ...     while True:
    ...         yield a
    ...         a, b = b, a + b
    >>> import itertools
    >>> list(itertools.islice(fib(), 10))
    [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

    This code uses itertools.islice to take a finite number of elements from an infinite stream. You are advised to have a good look at the functions in the itertools module, as they are essential tools for writing advanced generators with great ease.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s